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Abstract. This paper deals with the problem of discrete-time nonlin-
ear system identification via Recurrent High Order Neural Networks. It
includes the respective stability analysis on the basis of the Lyapunov '
approach for the extended Kalman filter (EKF)-based NN training al-
gorithm, which is applied for learning. Applicability of the scheme is
illustrated via simulation for a discrete-time nonlinear model of an elec-
tric induction motor.

1 Introduction

Neural networks (NN) have become a well-established methodology as exempli-
fied by their applications to identification and control of general nonlinear and
complex systems. In particular, the use of recurrent high order neural networks
(RHONN) has increased recently [7]. There are recent results which illustrate
that the NN technique is highly effective in the identification of a broad cat-
egory of complex discrete-time nonlinear systems without requiring complete
model information ([12], [13]).

Lyapunov approach can be used directly to obtain robust training algorithms
for countinuous-time recurrent neural networks (7], [9]). For discrete-time sys-
tems, the problem is more complex due to the couplings among subsystems,
inputs and outputs. Few results have been published in comparison with those
for continuous-time domain ([12], [13]). By other hand discrete-time neural net-
works are more convenient for real-time applications.

For many nonlinear systems it is often difficult to obtain their accurate and
faithful mathematical models, regarding their physically complex structures and
hidden parameters as discussed in [1]. Therefore, system identification becomes
important and even necessary before system control can be considered not only
for understanding and predicting the behavior of the system, but also for ob-
taining an effective control law.

The identification problem consists of choosing an appropriate identification
model and adjusting its parameters according to some adaptive law, such that the
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response of the model to an input signal (or class of input signals), approximates
the response of the real system to the same input [9].

Several training methods for discrete-time recurrent networks have been pro-
posed in the literature as a viable alternative. New training algorithms, e.g., those
based on Kalman filtering, have appeared [3], [4], [10]. In this paper, we use an
Extended Kalman Filter (EKF)-based training algorithm for the RHONN, in
order to identify discrete-time nonlinear systems.

2 Mathematical preliminaries

Through this paper we use k as the step sampling, k € 0 U Z* , |e| for the
absolute value, ||e|| for the Euclidian norm for vectors and for any adequate
norm for matrices. For more details related to this section see [2]. Consider a
MIMO nonlinear system:

x(k+1)=F(x(k),u(k) (1)
where x € R, u € R™ and F € R" x R™ — R" is nonlinear function.

Definition 1. The solution of (1) is semiglobally uniformly ultimately bounded
(SGUUB), if for any 2, a compact subset of R* and all x (ko) € 2, there exists
an € > 0 and a number N (e, x (ko)) such that ||x (k)| < € for all k > ko + N.
In other words, the solution of (1) is said to be SGUUB if, for any apriori given
(arbitrarily large) bounded set 2 and any apriori given (arbitrarily small) set
2, which contains (0,0) as an interior point, there exists a control u, such
that every trayectory of the closed loop system starting from (2 enters the set
0 ={x (k) lIx (k)|| < €}, in a finite time and remains in it thereafter [2].

Theorem 1 [2] Let V (x (k)) be a Lyapunov function for the discrete-time
system (1), which satisfies the following properties:

7 (X B <V (x (%)) <72 (Ix (K)])
Vx(k+1)) =V (x (k) = AV (x (k) < =3 (Ix B)]I) +75 ()

where ( is a positive constant, v, () and -, () are strictly increasing functions,
and 73 (e) is a continuous, nondecreasing function. Thus if

AV (x) <0 for [x (k)| >¢
then x (k) is uniformly ultimately bounded, i.e. there is a time instant k7, such
that ||x (k)| < ¢,V k < kr.

3 Discrete-time Recurrent Neural Networks

Consider the following discrete-time recurrent high order neural network (RHONN):

z;(k+1) =w;rsz:(9:(k),u(k)), i=1,--- n (2)

’
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where i (I = 1,2,--- ,n) is the state of the ith ncuron, L; is the respective
aumber of higer-order connections, {Iy, I2,---, 1z} is a collection of non-ordered
subscts of {1,2,-- ,n}, n is the state dimension, w; (i = 1,2,---,n) is the
respective on-line adapted weight vector, and z;(z(k), u(k)) is given by

di, {1
Ziy H.iehyz;’( )
z; Mienyi”®
zlzkyuty = | =] . ®3)
Ziy, Hjel:_‘yii’(r")

with d;, (k) being a nonnegative integers, and y; is defined as follows:

i Ui .1 .S(Il)“
Yin S(zn)
- = 4
Y Yipss uy ( )
LYingm J P Um ]
In (4), u = [u1,u2,--- ,um] ' is the input vector to the neural network, and
S(e) is defined by
1
5() = T exp(—Pr) ®)

Consider the problem to approximate the general discrete-time nonlinecar
system (1), by the following discrete-time RHONN serie-parallel representation
(s}:

x; (k4 1) =i z (z(k), u(k)) + &, (6)
where x; is the ith plant state, ¢, is a bounded approximation error, which
can be reduced by increasing the number of the adjustable weights [9]. Assume
that there exists ideal weights vector w] such that lle<, || can be minimized on
a compact set {2;, C RL« The ideal weight vector wj is an artificial quantity
required for analytical purpose [9}. In general it is assumed that this vector exists
and is constant but unknown. Let us define its estimate as w; and the estimation
error as

Wy (k) = wi — wi (K) (7)

The estimate w; is used for stability analysis which will be discussed later.

Since w} is constant, then @; (k + 1) — @i (k) = wi (k + 1) —w; (k), Yk € OUZY.

4 The EKF Training Algorithm

Kalman filtering (KF) estimates the state of a lincar system with additive state
and output white noises [1], {3]. For KF-based neural network training, the net-
work weights become the states to be estimated, with the error between the
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neural network output and the desired output being considered; this error
considered as additive white noise. For identification, the desired output is in-
formation generated by the plant; in this paper, the respective state, Due
the fact that the neural network mapping is nonlinear, an extended Kalmaa
Filtering (EKF)-tyvpe is required.

The training goal is to find the optimal weight values that minimize the
prediction errors (the differences between the desired outputs and the neural
network outputs). The EKF-based NN training algorithm is described by

K (k) = P (k) Hy (k) M; (k) i=1,---,m
wi (k + 1) = w; (k) + 0, K (k) eq (k) (8
Pi(k+1)= P (k) - K; (k) HT (k) P; (k) + Qi (k)
with
My (k) = [R, (k) + HT (k) P () H: (k)] ()
e (k) = x; (k) — 2: (k) , (10}
£42£4 is the prediction

where e; (k) is the respective identification error, P (k) € R
error covariance matrix at step k, w; € R is the weight (state) vector, L;
the respective number of neural network weights, x; is the ith Blant state, x;
the ith neural network state, n is the number of states, I{; € R is the Kalm.an
gain vector, Q; € R s the NN weight estimation noise covariance matrix,
R, € R is the error noise covariance; H; € R is a vector, in which each entry
{fi,,}) is the derivative of one of the neural network state, (z,), with respect to
one neural network weight, (w,,), as follows

i, (= [ 228 }T (1
awr", (k) w, (k)= (k+1)

wherei=1..,nand j=1,...L;

Usually P,and Q, are initialized as diagonal matrices, with entries /7 (0) and
Q: (0). respectively. It is important to remark that H, (k) , K; (k) and P; (k) for
the EKF are bounded; for a detailed explanation of this fact see [11].

Then the dynamics of the identification error (10) can be expressed as

ei (k+ 1) = w; (k) z; (z(k), u(k)) + e, (12)
By the other hand the dynamics of (7) is
Wi (k+ 1) = @; (k) ~ 0, K (k) e (k) (13)

Now, we establish the main result of this paper in the following theorem.

Theorem 2: The RHONN (2) trained with the EKF-based algorithm (8) to
identify the nonlinear plant (1), ensures that the identification error (10) is
semiglobally uniformly ultimately bounded (SGUUB); moreover, the RHONN
weights remain bounded.
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Proof. Consider the Lyapunov function candidate

Vi (k) = @7 (k) (k) + € (k) (14)
AV; (k) =V (k+1) -V (k)
=aF (k+ 1)@ (k+1)+6€ (E+1) —@F (k) W; (k) — €2 (k)

Using (12) and (13) in (14)

AV; () = [ (k) — 0K (k) e ()] (@ (k) — mf (k) e: (k)] — @i (K) @i (k)
(151 (k) 2 (@(R), u(®)) + 2] [ (k) 2 (2(k), u(k)) + €] — & (k)

which can be expressed as

AV; (k) = @F (k) @: (k) — BT (k) @ (B) +n°¢f (k) KT K (k)
2e.,5; () 2 (@), u(k)) + 27 (@(k), u(k) @ (k) @i (k) z: (2(k), u(k))
+e2, — 2me; (k) B (k) K (k) — € (k)

AV (k) < les (B2 [l = les (R)12 = 2] les (0)1 10 () I G0+ less
t 2es ] 13 (B l12: (@ (R), ulB) | + 18: (B |24 (@ (k), (k)]

Then AV; (k) < 0 when

2
€z

lei (k)| > _
1 - [lnk:]?

K1

and
iQWieimaXI | K (R)i I25z;1

I8 ()l > 2~ T (B, wlT

= Kn

Therefore the solution of (12) and (13) is stable, hence the identification error
and the RHONN weights are SGUUB [5].

5 Application

In this section we apply the above developed scheme to a three-phase induction
motor model

5.1 Motor model

The six-order discrete-time induction motor model in the stator fixed reference
frame (¢, B) under the assumptions of equal mutual inductances and linear mag-
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netic circuit is given by [6)

o) =+ 0 (#wye k) - kv ) - (7 ) mw

(
0% (k+ 1) = cos (nyf (k + 1)) p, () = sin (ny (K + 1)) py (¥)
W (k+1) = sin (g8 (k + 1)) py (k) + cos (n,8 (k + 1)) py (k)
i (1) = 9% (6) + Zu® (b

# (k+1) = ¢ () + 2o (k)

e(k+1):e(k>+w(k)'r+§ [ngm;—“)}
< (1 (k) 0 () = i (k) (1)) — 2B (15)
with

o1 () = a (cos (& (k) (k) +sin (np6s () ¥° (1))
+b (cos (¢ (K)) 1* (k) +sin (6 (k) #° (k)
2 (k) = a (cos (6 (£)) v (k) = sin (¢ (k) v* (k)
+b (cos (¢ (k)) i® (k) — sin (¢ (k)) 3(:’9})
0% (k) = i (k) + BT (k) + npBTw (k )v (k) — ~Ti® (k)
7 (k) = i (k) + 0BT (k) + np8Tw (k) 0P (k) — yT4 (k)
6 (k) = ny (k) (16)

with b = (1 - a) M, a“ﬁ’:?’:%—f‘g‘%ﬂ% =1L, ,.!!1_ B=2L a=e0T

and p = I; ------- ; besides Ls, L, and M are the stator, rotor and mutual inductance
respectlvely R and R, are the stator and rotor resistances respectively; ny is
the number of pole pairs; i® and i represents the currents in the o and 8
phases, respectively; % and v” represents the fluxes in the o and S phases,
respectively and 8 is the rotor angular displacement. Simulations are performed
for the system (15), using the following parameters: B, = = 140; L, = 400mH;
M =37TmH; R, = 10.102; L, = 412.8mH; n, = 2; J = 0.01Kgm?; T = 0.001s.

5.2 Neural network identification

The RHONN proposed for this application is as follows:
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Chip ¥
signal

Fig. 1, Identification scheme

o (k4 1) = wis (K) S (w (£)) +wiz (8) S () S (97 (0)) i (&)
+wyg (k) S () 8 7 (k)4 (k)

2 (1) = woy (8) S (w (1) S (97 (R)) +waa ()8 (&)

25 (k + 1) = ws1 (k) S (w (k) S (¥ (k) + waz (k) i° (k)

2 (b 1) = war (K) S (0% () + w2 (8) S (¥° (8))
+wag (k) S (1% (k)) + waq (k) u® (k)

25 (b 1) = s (6) S (9% () + ws2 (6) S (¥ (B)
+wss (k) S (i® (k) + wsa (k) v (%)

The training is performed on-line, using a series-parallel configuration as illus-
trated in Fig. 1. During the identification process the plant and the NN oper-
ates in open-loop. Both of them (plant and NN) have the same input vector

[u& ug 1T ; e and ug are chirps functions with 170volts of maximal amplitude
and incremental frecuencies from 0Hz to 250Hz and 0Hz to 200Hz respectively.
All the NN states are initialized in a random way as well as the weights vectors.
It is important remark that the initial conditions of the plant are completely
different from the initial conditions for the NN. The identification is performed
using (8) with ¢ = 1,2,--- ,n with n the dimension of plant states (n = 6).

5.3 Simulation results

The results of the simulation are presented in Figs. 2-8. Fig. 2 shows the identi-
fication of rotor angular displacement; Fig. 3 displays the identification perfor-
mance for the speed rotor; Fig. 4 and Fig. 5 present the identification perfor-
mance for the fluxes in phase o and 3, respectively. Figs 6 and 7 portray the
identification performance for currents in phase a and f, respectively. Finally,
the weights evolution are presented in Fig. 8.
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Fig. 2. Angular displacement identification

975356
76358 -
97.6353 - : e

Tars3est

or63s0

yusd (radace}

Berpass.

Rolor

57485 -

97 6256~

°7.6354

576358 =
200

Fig. 8. Rotor speed identification

Fig. 4. ¥ identification



Discrete Time Nonlinear Identification via... 19

i)

AN R e d At

Beta buc

8 =
8 B

Bota eumerd (A)
B

Fig. 8. Weights evolution




20 Alma Y. Alanis et al.

6 Conclusions

This paper has presented the application of recurrent high order neural networks
to identification of discrete-time nonlinear systems. The training of the neural
networks was performed on-line using an extended Kalman filter. The bound-
ness of the identification error was established on the basis of the Lyapunov
approach. Simulation results illustrate the applicability of the proposed identifi-
cation methodology. Researches are being pursued to develop new discrete-time
nonlinear adaptive control based on the discussed identification scheme.
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